Time-Dependent Voltage Sensor Relaxation in hERG Channels
نویسندگان
چکیده
منابع مشابه
Voltage-Dependent Gating of hERG Potassium Channels
The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv) channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deacti...
متن کاملFast and Slow Voltage Sensor Movements in HERG Potassium Channels
HERG encodes an inwardly-rectifying potassium channel that plays an important role in repolarization of the cardiac action potential. Inward rectification of HERG channels results from rapid and voltage-dependent inactivation gating, combined with very slow activation gating. We asked whether the voltage sensor is implicated in the unusual properties of HERG gating: does the voltage sensor move...
متن کاملThe voltage sensor in voltage-dependent ion channels.
In voltage-dependent Na, K, or Ca channels, the probability of opening is modified by the membrane potential. This is achieved through a voltage sensor that detects the voltage and transfers its energy to the pore to control its gate. We present here the theoretical basis of the energy coupling between the electric field and the voltage, which allows the interpretation of the gating charge that...
متن کاملFunctional interactions of voltage sensor charges with an S2 hydrophobic plug in hERG channels
Human ether-à-go-go-related gene (hERG, Kv11.1) potassium channels have unusually slow activation and deactivation kinetics. It has been suggested that, in fast-activating Shaker channels, a highly conserved Phe residue (F290) in the S2 segment forms a putative gating charge transfer center that interacts with S4 gating charges, i.e., R362 (R1) and K374 (K5), and catalyzes their movement across...
متن کاملComponents of gating charge movement and S4 voltage-sensor exposure during activation of hERG channels
The human ether-á-go-go-related gene (hERG) K(+) channel encodes the pore-forming α subunit of the rapid delayed rectifier current, IKr, and has unique activation gating kinetics, in that the α subunit of the channel activates and deactivates very slowly, which focuses the role of IKr current to a critical period during action potential repolarization in the heart. Despite its physiological imp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2015
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2014.11.675